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Abstract

We introduce a feasible and incremental framework for exact real arithmetic

based on the composition of linear fractional transformations with either all non-

negative or all non-positive integer coe�cients. We include a set of algorithms for

the basic arithmetic operations and the elementary functions.

1 Introduction

It is generally accepted that 
oating-point computation is suitable for a wide range of

applications. However, it is well-known that the accumulation of round-o� errors due

to a large number of 
oating-point calculations can produce grossly inaccurate or even

incorrect results.

Interval analysis [?] has been used to partially circumvent this problem by maintaining

a pair of bounding 
oating-point numbers that is guaranteed to contain the real number

or interval in question. However, this interval can get unjusti�ably large and thereby

convey very little information.

In principle, exact real arithmetic provides an alternative technique for real number

computation and veri�cation of numerical algorithms. In practice, however, exact real

arithmetic has proved too ine�cient to provide a feasible alternative.

In the literature, there are broadly speaking three frameworks for exact real computer

arithmetic:

(i) In�nite sequences of linear maps proposed by Avizienis [?] and appeared in the work

of Watanuki et al [?], Boehm an Cartwright [?], Di Gianantonio [?], Escardo [?],

Nielsen et al [?] and Menissier-Morain [?].
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(ii) Continued fraction expansions proposed by Gosper [?], developed by Peyton Jones [?]

and Vuillemin [?] and advanced more recently by Kornerup et al [?, ?, ?, ?].

(iii) In�nite composition of linear fractional transformations (also known as homogra-

phies or M�obius transformations) generalises the other two frameworks as demon-

strated by Vuillemin [?]. Nielsen et al [?] showed that this framework can be used

to represent quasi-normalised 
oating point [?].

We introduce here a new, feasible and incremental representation of the non-negative

extended real numbers based on the composition of linear fractional transformations with

either all non-negative or all non-positive integer coe�cients [?].

Prototypes have been implemented in C++, Java and Miranda.

2 Linear Fractional Transformations

A natural way to represent a real number, r say, is by a sequence of nested rational

intervals enclosing r such that the sequence of interval lengths converges to zero [?, ?].

Let R denote the set of real numbers with the Euclidean topology, R1 the one point

compacti�cation of R and [0;1] the one point compacti�cation of the non-negative real

numbers [0;1). The closed intervals [a; b] in R
1 are de�ned as the points from a to b

in the numerically increasing direction, possibly including 1. For example, the closed

interval [1;�1] is the complement of the open interval (�1; 1).

De�nition 2.1 A 0-dimensional linear fractional transformation (lft) with real coe�-

cients is a fraction in R1 , namely a homogeneous coordinate representation of an extended

real number,

t 
a

b

! =
a

b
(1)

where a 6= 0 or b 6= 0. A 1-dimensional lft with real coe�cients is a function from R
1

to R1 with the general form

t0@ a c

b d

1
A(x) =

ax + c

bx + d
(2)

where the determinant

����� a c

b d

����� 6= 0. A 2-dimensional lft with real coe�cients is a

function from R
1 � R

1 to R1 with the general form

t 
a c e g

b d f h

!(x; y) = axy + cx+ ey + g

bxy + dx+ fy + h
(3)
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where

����� ax + e cx + g

bx + f dx+ h

����� and
����� ay + c ey + g

by + d fy + h

�����, as functions of x and y respectively,

are not identically 0.

In homogeneous coordinates, a 1-dimensional lft is reduced to matrix multiplication

0
@ a c

b d

1
A :

 
p

q

!
7�!

 
ap + cq

bp+ dq

!
:

Therefore, it is convenient to drop the t in Equations (1), (2) and (3). In general, we will

use the letters V and W to denote vectors, M and N to denote matrices and T and U

to denote rank 3 tensors, which correspond to 2-dimensional lft's. These are collectively

referred to as tensors. We will also use x and y to denote non-negative extended real

numbers.

De�nition 2.2 The information Info(P ) contained by an lft P is de�ned by Info(V ) =

fV g, Info(M) = M([0;1]) and Info(T ) = T ([0;1]; [0;1]).

Observe that Info(M) � [0;1] whenever the coe�cients of M are either all non-

negative or all non-positive integers In this paper, we present a framework for exact real

arithmetic using lft's with either all non-negative or all non-positive coe�cients. From

now onwards, unless otherwise stated, assume all lft's have either all non-

negative or all non-positive coe�cients.

It is convenient to consider a rank 3 tensor T as a pair of matrices (T0; T1), a matrix

M as a pair of vectors (M0;M1) and a vector V as a pair of integers (V0; V1).

De�ne the max of two vectors by

max(V;W ) =

8>>>>>>>>>><
>>>>>>>>>>:

V if V � W

W if V � W

V if W =

 
0

0

!

W if V =

 
0

0

!

and min similarly, where � is the usual ordering on [0;1] using homogeneous coordinates.

Also, let M = max(M0;M1), M = min(M0;M1), T = max(T0; T1) and T = min(T0; T1).

Lemma 2.3 The information contained by a matrix M and a rank 3 tensor T is given

by:

(i) Info(M) =
h
M;M

i
� [0;1]

(ii) Info(T ) =
h
T ; T

i
� [0;1]
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Proposition 2.4 Composition of 1-dimensional lft's M and N corresponds to re�ne-

ment of non-negative rational intervals:

M(N([0;1])) �M([0;1])

In other words, [0;1] represents no information and N re�nes the information given

by M . In fact, we have:

Proposition 2.5 Given two rational intervals I and J, we have I � J i� there exists

an lft M such that I =M(J).

Any non-negative real number can therefore be represented as the intersection

\
n�0

M0M1M2 : : :Mn([0;1])

for a sequence of lft's Mn. We can denote this real number by an in�nite product of

matrices 0
@ a0 c0

b0 d0

1
A
0
@ a1 c1

b1 d1

1
A
0
@ a2 c2

b2 d2

1
A � � � (4)

which we will call an in�nite normal product. This notion generalises the concept of

interval expansion [?] in which Mn is restricted to a linear map. Notice however that

an in�nite normal product does not in general represent a point, although it always

represents an interval. A singular matrix is in fact a constant that can be replaced by a

vector, thus terminating the product; this we will call a �nite normal product. Thus, a

�nite normal product represents a rational number, whereas an in�nite normal product

may represent any number.

As mentioned above, the tensor representing an lft is only unique up to scaling. Hence,

we can identify the lft's with the equivalence classes arising from the equivalence relation

� on tensors induced by scaling. Let us denote by P �, the tensor P reduced to its lowest

terms after division by the greatest common divisor of the coe�cients. We can then

identify a unique tensor P � in each equivalence class.

This gives a simple representation and a convenient operational semantics for the

lazy representation of the reals: �nite segments of the matrix product in Equation (4)

give incremental approximations to the real number in question. In particular, the �rst

matrix tells us that the result is contained in the interval [a0=b0; c0=d0] or [c0=d0; a0=b0]

depending on the sign of the determinant of the matrix.

3 Arithmetic Operations

The spirit of Gosper's [?] Quadratic Algorithm for continued fractions [?] using 2-dimensional

lft's, further developed by Vuillemin [?], can be extended to normal products.
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The three most basic arithmetic operations closed on [0;1] can be represented as

follows:  
0 1 1 0

0 0 0 1

!
(x; y) = x+ y

 
1 0 0 0

0 0 0 1

!
(x; y) = x� y

 
0 1 0 0

0 0 1 0

!
(x; y) = x� y

Therefore, we need to be able to convert expressions containing vectors, matrices and

rank 3 tensors into normal products. In other words, we need an operational semantics

for the absorption and emission of normal products to and from matrices and rank 3

tensors.

In order to simplify composition of lft's of various dimensions, we de�ne the dot

product, the left product and the right product, denoted respectively by �, Li and Ri as

follows:

(M � V )i =
X
j=0;1

MijVj

(M �N) = (M �N0;M �N1)

(M � T ) = (M � T0;M � T1)
T RiV = (T0 � V; T1 � V )
T RiM = (T0 �M;T1 �M)

T LiV = TT RiV

T LiM = (TT RiM)T

where TT indicates the transpose of T de�ned by swapping its middle two columns.

Proposition 3.1 The following matrix absorption equations hold:

M(V ) = M � V
M(N(x)) = (M �N)(x)

The following rank 3 tensor absorption equations hold:

T (V; y) =

(
L(y) if jLj 6= 0

L � L if jLj = 0

T (M(x); y) = (T LiM)(x; y)

T (x; V ) =

(
R(y) if jRj 6= 0

R � R if jRj = 0

T (x;M(y)) = (T RiM)(x; y)

where L = T LiV and R = T RiV .
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Note that the left and right products of a rank 3 tensor with a vector may give a

singular matrix, which is essentially a vector.

For computing the value of T (x; y), we need a strategy for deciding whether to absorb

from x or y. The aim is to reduce the length of the interval Info(T ). Note that an x

absorption reduces the lengths of the intervals X0 = Info((TT)0) and X1 = Info((TT)1),

while a y absorption reduces the lengths of the intervals Y0 = Info(T0) Y1 = Info(T1).

Therefore, the most reasonable approach is not to select x if X0 \ X1 = ; and not to

select y if Y0 \ Y1 = ;. If both intersections are non-empty then choose x, because this is

the argument of the elementary functions de�ned in subsection 5.3.

The information in a 2-dimensional lft T can be represented by the 1-dimensional lft

(T ; T ), denoted by T head. Thus, any matrix M can be emitted from a rank 3 tensor T so

long as Info(M) � Info(T ) = Info(T head). The choice M = T head is called naive emission.

Let us de�ne T tail = (T head)�1 � T , where matrix inversion is de�ned by

0
@ a c

b d

1
A
�1

=

0
@ d �c
�b a

1
A :

We choose to scale the matrix inversion by the determinant in order to ensure we only

get integers in the rank 3 tensor emission equation.

Proposition 3.2 The following rank 3 tensor emission equation holds:

T (x; y) = T head(T tail(x; y)):

This corresponds to the extraction of maximum information, but in practice it gives

rise to an integer size explosion.

A number of alternative emission methods were tried in practice. However, we found

that one of the simplest and most e�cient scheme is to �rst emit a matrix of the form

Ee =

0
@ 2e 0

1 1

1
A

representing the exponent e � 0 of the number, followed by a sequence of the three

matrices

M�1 =

0
@ 0 1

2 1

1
A

M0 =

0
@ 1 3

3 1

1
A

M1 =

0
@ 1 2

1 0

1
A

representing the mantissa of the number.

6



We will show that in fact this scheme leads to the emission of a sequence of nested

2-adic intervals of the form �
m� 1

2n
;
m+ 1

2n

�
(5)

which is essentially an arbitrary precision 
oating point number.

In order to see this, put

hn;m; ei =
0
@ (2n +m+ 1)2e (2n +m� 1)2e

2n+1 2n+1

1
A

where �2n < m < 2n and note that EeMm = h1; m; ei.
Recall [?] that any real number can be represented by sequences of signed binary

digits, namely �1, 0 and 1, in the form

2e�1be�1 + � � �+ 4b2 + 2b1 + b0 +
1

2
b�1 +

1

4
b�2 + � � �

denoted by

be�1 : : : b2b1b0:b�1b�2 : : :

where bi 2 f�1; 0; 1g for all integers i < e.

Proposition 3.3

EeMc0Mc1Mc2 � � �Mcn�1 = hn; c0c1c2 : : : cn�1; ei

Observe that

Info(hn;m; ei) =
�
1 +

�
m� 1

2n
;
m+ 1

2n

��
2e�1:

Therefore, as promised, a sequence of nested 2-adic intervals of the form given in Equa-

tion (5) is emitted.

4 Continued Fractions

The development

a0 +
b0

a1 +
b1

a2 +
b2

a3 + � � �

(6)

is called a continued fraction [?, ?, ?, ?].

The quantity
Pn

Qn

= a0 +
b0

a1 +
b1

a2 + � � �+ bn�1
an

(7)
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is called the nth approximant. The 0th approximant is a0. If the sequence Pn=Qn

converges to a real number r then the continued fraction is said to be convergent and

represent the number r.

Using the lft's

Mn(x) =

0
@ an bn

1 0

1
A (x) = an +

bn
x

(8)

we can generate the continued fraction (6). Therefore, a continued fraction with either

all non-negative or all non-positive coe�cients corresponds to a normal product.

We can further observe that

mY
n=0

Mn �
0
@ Pm Pm�1

Qm Qm�1

1
A (9)

where P�1 = b0 and Q�1 = 0.

Of course, we should consider the issue of convergence. The following comprehensive

test was devised by Pringsheim [?].

Lemma 4.1 The divergence of the series

1X
n=2

s
bn�1bn
an

(10)

is necessary and su�cient for the convergence of the continued fraction (6) with non-

negative coe�cients.

Note that the product of any two matrices is unchanged by swapping the columns of

the �rst matrix and the rows of the second matrix at the same time. By carrying out

this procedure when necessary along an in�nite normal product, we can assume without

loss of generality, that all the matrices have strictly positive determinants. If we combine

this with the observation that0
@ a c

b d

1
A =

 
c
d

k
d

1 0

!
�
0
@ b d

1 0

1
A

with k =

����� a c

b d

�����, we obtain a necessary and su�cient condition for the convergence of

an in�nite normal product using Lemma 4.1.

5 Algorithms

This section contains algorithms by Potts [?] for � and the elementary functions; power,

sine, cosine, tangent, inverse tangent, exponential, natural logarithm, hyperbolic tangent,

inverse hyperbolic sine and inverse hyperbolic tangent. The other elementary functions

namely inverse sine, inverse cosine, hyperbolic sine, hyperbolic cosine and inverse hyper-

bolic cosine can be de�ned in terms of the above.
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5.1 Pi

Using Ramanujan's formula [?] for �

1

�
=

1X
n=0

(�1)n 12(6n)!

(n!)3(3n)!

13591409 + 545140134n

(6403203)n+
1

2

we can derive the normal product
p
10005

�
=

1Y
n=0

Ipin

where the iterator Ipin is given by

Ipin=0 =

0
@ 13591409 0

426880 426880

1
A

Ipin>0 =

0
@ bn � an bn

an 0

1
A

with

an = (1� 6n)(1� 2n)(6n� 5)cn

bn = n3dn

cn = 13591409 + 545140134n

dn = 5963320012791731724288000n� 5814642789749963059200000

5.2 Square Root of a Positive Integer

The square root of a positive integer m is most easily calculated using the well known

formula p
m =

1Y
n=0

Isqrt(m)

where the iterator Isqrt(m) is given by

Isqrt(m) =

0
@ dpmc m

1 dpmc

1
A

and dxc is the nearest integer to x.

5.3 Elementary Functions

Note that a 1-dimensional lft with an argument y and linear coe�cients in a parameter

x is in fact a 2-dimensional lft with the arguments x and y:0
@ ax+ e cx+ g

bx + f dx+ h

1
A (y) =

 
a c e g

b d f h

!
(x; y)
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The coe�cients a,b,c,d,e,f and g can be allowed to be negative integers provided that

we restrict the domain of x to the interval I such that the entries of the matrix evaluate

to elements of [0;1]. This is because if x reduces to the form M(z) where Info(M) � I

then the left product of the tensor with M can be shown to give a tensor with either

all non-negative or all non-positive integer coe�cients, thus allowing the emission of

matrices.

Many continued fractions for elementary functions have been derived by using various

techniques [?, ?] from their power series, most notably by Euler [?, ?] and Gauss. The

continued fractions are suitably chosen and then converted into 2-dimensional lft's using

the following matrix identities:

0
@ a c

b d

1
A �

0
@ ax cx

bx dx

1
A

0
@ a c

b 0

1
A
0
@ d f

e 0

1
A �

0
@ a cx

b 0

1
A
0
@ dx fx

e 0

1
A

0
@ a cx

b 0

1
A
0
@ d f

e 0

1
A =

0
@ a c

b 0

1
A
0
@ d f

ex 0

1
A

0
@ a c

b d

1
A
0
@ e g

f h

1
A �

0
@ c a

d b

1
A
0
@ f h

e g

1
A

0
@ ax c

bx d

1
A
0
@ e g

f h

1
A =

0
@ a c

b d

1
A
0
@ ex gx

f h

1
A

0
@ 0 1

1 0

1
A 1Y

n=1

0
@ an cn

bn dn

1
A =

1Y
n=1

0
@ dn bn

cn an

1
A

0
@ a c

b d

1
A �

0
@ c k

d 0

1
A
0
@ b d

1 0

1
A

where k =

����� a c

b d

�����

Listed below is a set of algorithms for the elementary functions in the form of in�nite

right products of 2-dimensional lft's, which are valid for values of x and y such that the

entries of the matrices in the corresponding in�nite products evaluate to non-negative

extended real numbers:

xy =
1Y
n=0

Ipowyn (y)Ipowxn (x)

sin
p
xp

x
=

1Y
n=0

Isinn (x)
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cos
p
x =

1Y
n=0

Icosn (x)

tan
p
xp

x
=

1Y
n=0

Itann (x)

arctan x =
1Y
n=0

Iarctann (x)

exp x =
1Y
n=0

Iexpn (x)

lnx =
1Y
n=0

Ilnn (x)

tanh x =
1Y
n=0

Itanhn (x)

arcsinh x =
1Y
n=0

Iarcsinhn (x)

arctanh x =
1Y
n=0

Iarctanhn (x)

where

Ipowyn=0(y) =

0
@ y 1

0 1

1
A ;

Ipowyn>0(y) =

0
@ 0 n� y

n+ y 2

1
A ;

Ipowxn (x) =

0
@ 0 x� 1

x� 1 1 + 2n

1
A ;

Isinn=0(x) =

0
@ 1 0

1 x

1
A ;

Isinn>0(x) =

0
@ 2n(2n+ 1)� x 2n(2n+ 1)x

1 0

1
A ;

Icosn=0(x) =

0
@ 1 0

1 x

1
A ;

Icosn>0(x) =

0
@ 2n(2n� 1)� x 2n(2n� 1)x

1 0

1
A ;

Itann=0(x) =

0
@ 15� 2x x

15� 7x x

1
A ;
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Itann>0(x) =

0
@ pn � (7 + 12n)x (1 + 4n)x

pn � 4(3 + 4n)x (1 + 4n)x

1
A

with pn = (1 + 4n)(3 + 4n)(5 + 4n);

Iarctann (x) =

0
@ 0 x

(1 + n)2x 1 + 2n

1
A ;

Iexpn=0(x) =

0
@ x 2 + x

x 2� x

1
A ;

Iexpn>0(x) =

0
@ 0 x

x 2(1 + 2n)

1
A ;

Ilnn (x) =

0
@ (x� 1)qn 2(x� 1)

(1 + 2n)qn (1 + 3n) + qnx

1
A

with qn = 1 + n;

Itanhn (x) =

0
@ 0 x

x 1 + 2n

1
A ;

Iarcsinhn=0 (x) =

0
@ 1 0

1 x

1
A ;

Iarcsinhn>0 (x) =

0
@ 2nrn � (2n� 1)2x 2nrnx

(2n� 1)2 0

1
A ;

Iarctanhn (x) =

0
@ (1 + n)x x

(1 + n)rn(1� x) rn � nx

1
A

with rn = 1 + 2n:

5.4 Example

The Stieltjes type continued fraction for arctanx is given by

arctanx =
x

1 +
x2

3

1 +
4x2

15

1 + � � �
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This can be transformed to

arctanx =
1Y
n=0

0
@ 0 x

(1 + n)2x 1 + 2n

1
A

or put another way

arctan x = 
0 1 0 0

1 0 0 1

!
(x;

 
0 1 0 0

4 0 0 3

!
(x;

 
0 1 0 0

9 0 0 5

!
(x;

 
0 1 0 0

16 0 0 7

!
(x; � � �)))):

For example, the tree of lft's representing arctan�, where � is the Golden Ratio given

by

� =
1Y
n=0

0
@ 2 1

1 1

1
A ;

can be pictured as

1
0

0
00 1

1
0

4
0

0
00 3

1
0

9
0

0
00 5

1
0

16
0

0
00 7

1
0

1
1

2
1

1
1

2
1

1
12
1

1
12
1

1
1

2
1

1
1

2
1

1
1

2
1

1
12
1

1
1

2
1

1
1

2
1

1
1

2
1

1
1

2
1

6 Conclusion

We have presented here a framework for exact real arithmetic on the non-negative ex-

tended real numbers using linear fractional transformations with either all non-negative or
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all non-positive integer coe�cients, including a set of algorithms for the basic arithmetic

operations and various elementary functions.

This framework has been implemented in C++ and Java. In practice, the integer

sizes have the same order of magnitude as the precision requested and the performance

is promising.

Some of the algorithms can be extended over the whole of [0;1] by using well known

identities, such as sin(x) = sin(��x). Others can be similarly extended by pre�xing nor-

mal products with a �nite number of integer coe�cient lft's. In fact the latter technique

can be used to extend the whole framework to R1 .

Consider for example the natural cover of R1 by the four intervals [0;1], [1;�1],
[1; 0] and [�1; 1]. Four lft's map each of the above intervals to the interval [0;1]. A real

number can be located in one of the above quarters in �nite time. Therefore, by using

one of the four lft's above, its computation can be eventually made in the interval [0;1].

Comparison of real numbers may be implemented using the quasi-relational compar-

ison operator <� described by Boehm and Cartwright [?].

Finally, we note that this framework may take intervals as inputs and produce intervals

as outputs. Therefore, it may be used for veri�cation of numerical algorithms.
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